If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2-54x+51=0
a = -3; b = -54; c = +51;
Δ = b2-4ac
Δ = -542-4·(-3)·51
Δ = 3528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3528}=\sqrt{1764*2}=\sqrt{1764}*\sqrt{2}=42\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-42\sqrt{2}}{2*-3}=\frac{54-42\sqrt{2}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+42\sqrt{2}}{2*-3}=\frac{54+42\sqrt{2}}{-6} $
| -3x^2-54x+51=0 | | -3x^2-54x+51=0 | | {x}{4}=10=11 | | {x}{4}=10=11 | | {x}{4}=10=11 | | 5n=3=-12 | | 9x/4=7x-1 | | 2(x-3)=-2x* | | 6x+9+7x=3x+36 | | –27=–41–v | | -20k=-300 | | r-20=-35 | | 1/3a-1/6a=-1 | | 6(5x-7)=4(3x+7) | | 3(x+2)+12=2(x+4)-5 | | 3{5-x}=7x-2 | | 4^x+4^x+4^x=333 | | 12y-12=2y+18 | | {3}{7}a+2=-{4}{7}a-5 | | 2(m-4)+2m=12 | | 3x-5-2x=10+15 | | 3x^2=19x−31 | | 12x-4=96 | | 8(x-3)/2+5x=9(x-1)-3 | | 2x^2+9x+30=0 | | 4x+5(x-4)=4(x-2)-2 | | 4(2x+1)-3(3-2x)=1 | | 4(2x-1)-(3x+1)=2(x-4) | | 3(2-4x)-7=20 | | 5(x-3)+7(2-x)-4(2x+7)-3x+2=11-8(x-7)+4x-(6-5x)+8-2x) | | p/6=3/10 | | X(2x-4)(x-7)=0 |